Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition

نویسندگان

  • Jan Hauke
  • Markus Riessland
  • Sebastian Lunke
  • Ilker Y. Eyüpoglu
  • Ingmar Blümcke
  • Assam El-Osta
  • Brunhilde Wirth
  • Eric Hahnen
چکیده

Spinal muscular atrophy (SMA), a common neuromuscular disorder, is caused by homozygous absence of the survival motor neuron gene 1 (SMN1), while the disease severity is mainly influenced by the number of SMN2 gene copies. This correlation is not absolute, suggesting the existence of yet unknown factors modulating disease progression. We demonstrate that the SMN2 gene is subject to gene silencing by DNA methylation. SMN2 contains four CpG islands which present highly conserved methylation patterns and little interindividual variations in SMN1-deleted SMA patients. The comprehensive analysis of SMN2 methylation in patients suffering from severe versus mild SMA carrying identical SMN2 copy numbers revealed a correlation of CpG methylation at the positions -290 and -296 with the disease severity and the activity of the first transcriptional start site of SMN2 at position -296. These results provide first evidence that SMN2 alleles are functionally not equivalent due to differences in DNA methylation. We demonstrate that the methyl-CpG-binding protein 2, a transcriptional repressor, binds to the critical SMN2 promoter region in a methylation-dependent manner. However, inhibition of SMN2 gene silencing conferred by DNA methylation might represent a promising strategy for pharmacologic SMA therapy. We identified histone deacetylase (HDAC) inhibitors including vorinostat and romidepsin which are able to bypass SMN2 gene silencing by DNA methylation, while others such as valproic acid and phenylbutyrate do not, due to HDAC isoenzyme specificities. These findings indicate that DNA methylation is functionally important regarding SMA disease progression and pharmacological SMN2 gene activation which might have implications for future SMA therapy regimens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drawing Word co-occurrence map of Spinal Muscular Atrophy disease

Introduction:  The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...

متن کامل

Spinal Muscular Atrophy: A Short Review Article

Spinal muscular atrophy (SMA) is a genetic disorder which affect nervous system and is characterized with progressive distal motor neuron weakness. The survival motor neuron (SMN) protein level reduces in patients with SMA. Two different genes code survival motor neuron protein in human genome. Skeletal and intercostal muscles denervation lead to weakness, hypotony, hyporeflexia, respiratory fa...

متن کامل

Histone deacetylase inhibition suppresses myogenin-dependent atrogene activation in spinal muscular atrophy mice.

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by mutations in the survival of motor neuron 1 (SMN1) gene and deficient expression of the ubiquitously expressed SMN protein. Pathologically, SMA is characterized by motor neuron loss and severe muscle atrophy. During muscle atrophy, the E3 ligase atrogenes, atrogin-1 and muscle ring finger 1 (MuRF1), mediate ...

متن کامل

Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy.

The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered ...

متن کامل

Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice.

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by reduced levels of the survival motor neuron (SMN) protein. Here we show that the proteasome inhibitor, bortezomib, increases SMN in cultured cells and in peripheral tissues of SMA model mice. Bortezomib-treated animals had improved motor function, which was associated with reduced spinal cord and muscle pathology and improved n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human Molecular Genetics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2009